DI.107.HEP The standard model

1. Study program

1. Study program	
1.1. University	University of Bucharest, West University of Timișoara,
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	High Energy Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit t	title	The standard r	nodel						
2.2. Teacher			Călin Alexa, Pau	l Grăv	ila, Roxana Zı	18			
2.3. Tutorials/Pra	2.3. Tutorials/Practicals instructor(s)			Paul Grăvila, Roz	xana Z	lus			
2.4. Year of		2.5.			5. Type of		2.7. Type	Content ¹⁾	DF
study	Ι	Semester	2	eva	aluation	E	of course		
							unit		
								Type ²⁾	DI

¹⁾ fundamental (DF), specialized (DS); complementary (DC) ²⁾ compulsory (DI), elective (DO), noncompulsory disciplines (DFC)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					
3.2.4. Preparation for exam					4
3.2.5. Other activities					0
3.3. Total hours of individual study	96				

	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Electrodynamics, Theory of relativity, Nuclear physics
4.2. competences	Knowledge about: algebra, quantum mechanics, electrodynamics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

of Speemie comp	ciclices acquirea
Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts of the standard model
	Solving problems of physics under given conditions
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	• Rigorous knowledge of quantum field theory, concepts, notions and problems in the area
	of theoretical particle physics and their interactions
	• Ability to use this knowledge in interpretation of experimental result and understand
	experiments at CERN; acquire the appropriate understanding of studied fundamental
	mechanisms
Transversal	Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language
-	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

7. Course objectives	
7.1. General objective	Understanding the foundations of structure of the matter: fundamental constituents and interactions between them; Understanding the structure of unified theory of interactions
7.2. Specific objectives	Acquire the skills to describe and calculate the physical properties of elementary particles and their interactions. Understanding the non-perturbative features of symmetry breaking in different situations.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
The structure of hadrons. Partons. Basic concepts of Quantum chromodynamics.	Systematic exposition - lecture. Examples.	4 hours
Weak interaction phenomenology. Symmetry breaking. Massive gauge fields. The standard model of electro-weak interaction. Experimental tests. The electromagnetic and weak interactions of quarks. The hadronic decays of the Z and W bosons.	Systematic exposition - lecture. Examples.	14 hours
The theory of strong interactions – quantum chromodynamics. Calculations. The Kobayashi-Maskawa matrix.	Systematic exposition - lecture. Examples.	6 hours
Neutrino masses and mixing. Experimental results. Majorana Neutrinos.	Systematic exposition - lecture. Examples.	4 hours

Bibliography:

1. F. Halzen, A. Martin, Quarks and Leptons, An Introductory course in modern particle physics, John Wiley & Sons Inc., 1984

- 2. W. N. Cottingham and D. A. Greenwood, An introduction to the Standard Model of particle physics, Combridge University Press, 2007
- 3. Particle Data Group The Review of Particle Physics (2024) <u>https://pdg.lbl.gov/2024/</u>

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Problems specific for each section of the course.	Problem solving.	14 hours
Event generators for high-energy particle collisions. Particles collisions.	Guided work.	14 hours

Bibliography:

- 1. F. Halzen, A. Martin, Quarks and Leptons, An Introductory course in modern particle physics, John Wiley & Sons Inc., 1984
- 2. W. N. Cottingham and D. A. Greenwood, An introduction to the Standard Model of particle physics, Combridge University Press, 2007
- 3. PYTHIA 8, https://pythia.org/manuals/pythia8312/Welcome.html
- 4. MadGraph5_aMC@NLO, <u>http://madgraph.phys.ucl.ac.be/</u>
- 5. HEPForge, <u>https://www.hepforge.org/</u>

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyse specific examples 	Written test/oral examination	60%
10.5.1. Tutorials	- ability to use specific problem solving methods - ability to analyse the results	Homeworks/written tests	40%

10.6. Minimal requirements for passing the exam Attendance of at least 50% for the lectures and at least 70% for the tutorials.

Correct solutions to the indicated subjects for obtaining the grade 5 (10 points scale) from all activities, part of the continuous evaluation.

Correct solutions to the indicated subjects for obtaining the grade 5 (10 points scale) within the final exam.

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
4.10.2024	Călin Alexa, Paul Grăvila, Roxana Zus	Paul Grăvila, Roxana Zus
Date of approval		Head of Department

Head of Department Lect.dr. Roxana Zus