DFC.112.HEP Non-abelian gauge theories

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	High Energy Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2. Course and									
2.1. Course unit	title	Non-abelian gauge theories							
2.2. Teacher Prof. Dr. Virgil Baran									
2.3. Tutorials/Practicals instructor(s)			Lecturer dr. Roxa	ına Zu	IS				
2.4. Year of		2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DC
study	II	Semester	2	ev	aluation	E	of course		
							unit		
								Type ²⁾	DFC

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					15
3.2.2. Research in library, study of electronic resources, field research					15
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					10
3.2.4. Preparation for exam				4	
3.2.5. Other activities					0

3.3. Total hours of individual study	44
3.4. Total hours per semester	100
3.5. ECTS	4

4. Prerequisites (if necessary)

4.1 Terequisites (if necessary)				
4.1. curriculum	Quantum field theory, Electrodynamics, Theory of relativity, Nuclear physics			
4.2. competences	Knowledge about: mechanics, algebra, quantum mechanics			

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

¹⁾ fundamental (DF), specialized (DS); complementary (DC)
2) compulsory (DI), elective (DO), noncompulsory disciplines (DFC)

6. Specific competences acquired

	etences acquired			
Professional	• Identify and proper use of the main physical laws and principles in a given context: the use			
competences	of the concepts of the standard model			
	Solving problems of physics under given conditions			
	• Use of the physical principles and laws for solving theoretical or practical problems with qualified tutoring			
	• Rigorous knowledge of quantum field theory, concepts, notions and problems in the area			
	of theoretical particle physics and their interactions			
	Ability to use this knowledge in interpretation of experimental result and understand			
	experiments at CERN; acquire the appropriate understanding of studied fundamental			
	mechanisms			
Transversal	Efficient use of sources of information and communication resources and training			
competences	assistance in a foreign language			
•	• Efficient and responsible implementation of professional tasks, with observance of the			
	laws, ethics and deontology.			

7. Course objectives

7. Course objectives	
7.1. General objective	Understanding the foundations of structure of the matter: fundamental constituents and interactions between them; Understanding the structure of unified theory of interactions
7.2. Specific objectives	Acquire the skills to describe and calculate the physical properties of elementary particles and their interactions. Understanding the non-perturbative features of symmetry breaking in different situations.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours	
Quantization of the fundamental fields, elementary particles, commutation relations, spin-statistics theorem.	Systematic exposition - lecture. Examples	4 hours	
Local gauge invariance and interaction. Spontaneous breaking of symmetries. Goldstone model. Higgs mechanism.	Systematic exposition - lecture. Examples 4 hours		
Interacting quantum fields. Feynman diagrams. Fundamentals of renormalization.	Systematic exposition - lecture. Examples	4 hours	
Non-abelian gauge theories: formulation and quantization	Systematic exposition - lecture. Examples	6 hours	
Renormalization of non-abelian gauge theories	Systematic exposition - lecture. Examples	6 hours	
Anomalies	Systematic exposition - lecture. Examples	4 hours	

Bibliography:

- 1. M. Maggiore, A modern introduction to Quantum Field Theory, Oxford University Press, 2005.
- 2. M.E. Peskin, D.V. Schroeder *An Introduction to Quantum Field Theory*, Advanced Book Program, Addison-Wesley Publishing Company, 1995.
- 3. S. Weinberg, *The quantum theory of fields*, Vol. I and Vol. II Cambridge University Press, 2005.
- 4. F. Halzen, A. Martin, Quarks and Leptons, An Introductory course in modern particle physics

Teaching and learning techniques	Observations/hours
Problem solving	4 hours
Problem solving	6 hours
Problem solving	6 hours
Problem solving	8 hours
Problem solving	4 hours
	Problem solving Problem solving Problem solving Problem solving

Bibliography:

- 1. Voja Radovanovich, Problem book in quantum field theory, Springer, 2005
- 2. M.E. Peskin, D.V. Schroeder *An Introduction to Quantum Field Theory*, Advanced Book Program, Addison-Wesley Publishing Company, 1995.
- 3. S. Weinberg, *The quantum theory of fields*, Vol. I and Vol. II Cambridge University Press, 2005.
- 4. M. Maggiore, A modern introduction to Quantum Field Theory, Oxford University Press, 2005.
- 5.W. Greiner, B. Müller, Gauge Theory of Weak Interactions, Springer, 2009
- 6.W. Greiner, S. Schramm, E. Stein, Quantum Chromodynamics, Springer, 2007

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/physical models The ability to give specific examples 	Written test and oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	40%

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score and of homeworks.

Date 10.10.2024

Teacher's name and signature

Prof. dr. Virgil Baran

Practicals/Tutorials instructor(s)

name(s) and signature(s)

Lecturer dr. Roxana Zus

Head of Department

Date of approval

Lecturer dr. Roxana Zus